1. 慢SQL消耗了70%~90%的数据库CPU资源;
2. SQL语句独立于程序设计逻辑,相对于对程序源代码的优化,对SQL语句的优化在时间成本和风险上的代价都很低;
3. SQL语句可以有不同的写法;
1 不使用子查询
例:SELECT * FROM t1 WHERE id (SELECT id FROM t2 WHERE name=’hechunyang’);
子查询在MySQL5.5版本里,内部执行计划器是这样执行的:先查外表再匹配内表,而不是先查内表t2,当外表的数据很大时,查询速度会非常慢。
在MariaDB10/MySQL5.6版本里,采用join关联方式对其进行了优化,这条SQL会自动转换为
SELECT t1.* FROM t1 JOIN t2 ON t1.id = t2.id;
但请注意的是:优化只针对SELECT有效,对UPDATE/DELETE子查询无效,固生产环境应避免使用子查询
2 避免函数索引
例:SELECT * FROM t WHERE YEAR(d) >= 2016;
由于MySQL不像Oracle那样支持函数索引,即使d字段有索引,也会直接全表扫描。
应改为—–>
SELECT * FROM t WHERE d >= ‘2016-01-01’;
3 用IN来替换OR
低效查询
SELECT * FROM t WHERE LOC_ID = 10 OR LOC_ID = 20 OR LOC_ID = 30;
—–>
高效查询
SELECT * FROM t WHERE LOC_IN IN (10,20,30);
4 LIKE双百分号无法使用到索引
SELECT * FROM t WHERE name LIKE ‘%de%’;
—–>
SELECT * FROM t WHERE name LIKE ‘de%’;
目前只有MySQL5.7支持全文索引(支持中文)
5 读取适当的记录LIMIT M,N
SELECT * FROM t WHERE 1;
—–>
SELECT * FROM t WHERE 1 LIMIT 10;
6 避免数据类型不一致
SELECT * FROM t WHERE id = ’19’;
—–>
SELECT * FROM t WHERE id = 19;
7 分组统计可以禁止排序
SELECT goods_id,count(*) FROM t GROUP BY goods_id;
默认情况下,MySQL对所有GROUP BY col1,col2…的字段进行排序。如果查询包括GROUP BY,想要避免排序结果的消耗,则可以指定ORDER BY NULL禁止排序。
—–>
SELECT goods_id,count(*) FROM t GROUP BY goods_id ORDER BY NULL;
8 避免随机取记录
SELECT * FROM t1 WHERE 1=1 ORDER BY RAND() LIMIT 4;
MySQL不支持函数索引,会导致全表扫描
—–>
SELECT * FROM t1 WHERE id >= CEIL(RAND()*1000) LIMIT 4;
9 禁止不必要的ORDER BY排序
SELECT count(1) FROM user u LEFT JOIN user_info i ON u.id = i.user_id WHERE 1 = 1 ORDER BY u.create_time DESC;
—–>
SELECT count(1) FROM user u LEFT JOIN user_info i ON u.id = i.user_id;
10 批量INSERT插入
INSERT INTO t (id, name) VALUES(1,’Bea’);
INSERT INTO t (id, name) VALUES(2,’Belle’);
INSERT INTO t (id, name) VALUES(3,’Bernice’);
—–>
INSERT INTO t (id, name) VALUES(1,’Bea’), (2,’Belle’),(3,’Bernice’);
1、应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2、对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
3、应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0
4、尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
可以这样查询:
*
select id from t where num=10
*
union
*
select id from t where num=20
5、下面的查询也将导致全表扫描:(不能前置百分号)
select id from t where name like ‘%c%’
若要提高效率,可以考虑全文检索。
6、in 和 not in 也要慎用,否则会导致全表扫描,如:
select id from t where num in(1,2,3)
对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
7、如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然 而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
select id from t where num=@num
可以改为强制查询使用索引:
select id from t with(index(索引名)) where num=@num
8、应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where num/2=100
应改为:
select id from t where num=100*2
9、应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
*
select id from t where substring(name,1,3)=’abc’–name以abc开头的id
*
select id from t where datediff(day,createdate,’2005-11-30′)=0–’2005-11-30′生成的id
应改为:
*
select id from t where name like ‘abc%’
*
select id from t where createdate>=’2005-11-30′ and createdate<’2005-12-1′
10、不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。
11、在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使 用,并且应尽可能的让字段顺序与索引顺序相一致。
12、不要写一些没有意义的查询,如需要生成一个空表结构:
select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
create table #t(…)
13、很多时候用 exists 代替 in 是一个好的选择:
select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)
14、并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段 sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。
15、索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有 必要。
16.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。
17、尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会 逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。
18、尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
19、任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。
20、尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。
21、避免频繁创建和删除临时表,以减少系统表资源的消耗。
22、临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使 用导出表。
23、在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。
24、如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。
25、尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。
26、使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。
27、与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时 间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。
28、在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。
29、尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。
30、尽量避免大事务操作,提高系统并发能力。
1,单库表别太多,一般保持在200以下为宜
2,尽量避免SQL中出现运算,例如select a+5 from A,让DB功能单一化
3,表设计尽量小而精,能用5个字段就不要用6个(不绝对,取决于业务,该冗余时坚决不要手软)
4,SQL事务不能设计太大,比如一次性提交10W条insert,当然这个不仅仅是性能问题了,可能直接内存溢出了
一般来说insert事务的话,5K-1W来做批处理就可以了(字段不能太大)
5,设计表的时候尽量用”小数据类型”,比如尽量避免text,blob等这些大家伙,优先使用ENUM和SET(小而美,范围有限,百益无一害)
6,设计表字段能用数字类型就千万别用字符类型,比如存IP地址,用int,别用varchar(方法自己百度一下吧)
7,尽量避免null字段,定义时尽量使用 not null.原因是允许null时不方便查询优化,复合索引也会失效,而且如果列有索引时会额外占用空间: a int(10) NOT NULL DEFAULT 0
8,图片等大家伙不要存DB,用fastdfs等中间件或者直接使用七牛等云存储都可以搞,也不贵
A,大SQL尽量拆分,多核CPU每个CPU只能执行一个SQL,所以并发时,一堆小的可能效率更高一些,并且容易命中缓存,而且不容易长时间锁表(无论什么锁都是时间越短越好),当然这个要结合实际情况分析了,一大堆小的万一增加IO负担呢。
B,事务尽可能的小,代码别偷懒,全加到一个transaction中,道理不多说了
C,存储过程,触发器之类的能避就全避免了吧,维护不方便,人员变动时,很多时候就忘了,时间一长全是定时炸弹
D,禁止select *,不用问为啥了,禁止就是禁止!需要啥就取啥是王道
E,update时,where语句尽量要走索引,不然会全表扫描,一般情况下,1G的数据至少10S(想想这可是update啊,锁住10S意味着啥)
F,or尽量不用,改为in(),当然in的范围太多也不行,尽量别超100
G,还是or,如果:select a from A where b=1 or c=1这种where里面不同字段进行or,这种尽量改为union。
select a from A where b=1
union
select a from A where c=1
H,避免 “% 前缀”模糊查询 。因为会导致索引失效,大数据量下是灾难
I,分页时:Select a from A limit 10000,10; 这种大偏移量下效率非常低。可以考虑如下几个方案:
select a from A WHERE id>=xxxx limit 11;(将上一页的最大值通过where id> 进行预处理,然后分页)
select a from A WHERE id >= ( select a from A limit 10000,1 ) limit 10;
select a from A inner join (select a from A limit 10000,10) using (id) ;
J,避免使用count(*),不知道为什么mysql优化这么个东西有那么难么,但是实际上大数量下这个东西真心慢,1000W以上至少几秒,作为替代方案,考虑使用nosql例如redis,memcached存下来,但是要定时校对。还有一个办法,直接做一个表存下来,每次增加或者减少都在这个表做update增减
K,UNION ALL 而非 UNION ,看需要啦,一般不用去重的业务的话去重压力不小,能省则省
L,尽量不用 INSERT SELECT,数据量大有延迟,同步完了可能有错误